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In this paper, stabilization of uncertain systems was established using
zonotopic sets. The obtained state feedback control laws are computed
by an off-line approach reducing computational burdens. The resolution
of a robust model predictive control (MPC) allows computing a sequence
of state feedback control laws corresponding to a sequence of zonotopic
invariant sets. The implemented control laws are then calculated by lin-
ear interpolation between the state feedback gains corresponding to the
nested pre-computed zonotopic sets. The proposed interpolation with
the use of zonotopic sets achieves better control performances.

1 Introduction

Model predictive control (MPC) is one of the most
successful techniques of advanced control in the pro-
cess industry. Thanks to the recent developments
of the underlying theoretical framework, MPC has
become a mature control technique able to provide
controllers ensuring stability, robustness, constraint
satisfaction and tractable computation for linear and
nonlinear systems [1]. The MPC is can be made in the
context of representation in state variables [2]. This
not only make use of existing theorems and results in
the state space theory, but also facilitates the exten-
sion of the theory of model predictive control to more
complex cases such as systems with stochastic distur-
bances, noise on measured variables or multivariable
control. For nonlinear uncertain systems, explicitly
modeling of the uncertainty is essential [3].

For modeling uncertain systems, it is very impor-
tant for MPC to be more robust [2]. Important areas
in MPC that have recently seen significant theoreti-
cal and implementational progress include robust and
stochastic MPC as well as efficient computations for
MPC via convex and reliable real-time optimization
[4].

Although these MPC schemes have remarkable
performance and good theoretical properties, there
is a hard computational burden due to the min-
maximization of the optimization problem, especially
in the presence of the system nonlinearity. The other

is to derive robust stability of MPC by minimization
of linear quadratic optimization problems subject to
polytopic uncertainty models and linear matrix in-
equality (LMI) constraints, which was firstly proposed
in [5]. From this formulation, a broad class of model
uncertainty descriptions can be addressed with guar-
anteed closed-loop robust stability of MPC.

Since the Lyapunov theory was introduced as an
efficient stability analysis tool of systems governed by
ordinary differential equations, the notion of set in-
variant was used in many problems concerning the
analysis and control of dynamic systems. An impor-
tant motivation, leading to introduce invariant sets,
was the need to analyze the effect of uncertain sys-
tems. An invariant set is a region of the state space
such the trajectory generated by the dynamical system
remains confined in the set if the initial condition lies
within it [6]. Robust controlled invariant set is partic-
ularly relevant since it can be used in the context of
constrained uncertain systems stability [7].

In recent years, in the theory of control, regard-
less of a particular area, there have been numerical
solutions are extensive. That is, a problem is usually
considered as solved whenever it can be written as a
(constrained) optimization problem. The difficulty in
solving such a problem is greatly influenced by the
way the constraint set is defined. In this context, sev-
eral families of sets vie for influence [8].

Historically, ellipsoidal sets [9] were a useful
choice of invariant sets due to their simple definition.
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Then, the problem becomes to design the invariant el-
lipsoids off-line [10]. Recently, polyhedral sets [11],
became widespread due to their representation flexi-
bility and reliable numerical algorithmes. Angeli [12]
proposed an ellipsoidal off-line MPC scheme for un-
certain polytopic systems. In [13] the authors pro-
posed an off-line robust constrained MPC algorithm
by choosing a sequence of states.

However, polyhedral sets become numerically un-
stable for higher dimensions and certain operations
scale badly with respect to the complexity of the set
in question. Zonotopic sets, a subclass of polyhedral
sets [11], have started to gain attention. Their sym-
metric shape, coupled with the flexibility inherited
from the polyhedral class makes them an appealing
choice for higher dimensions. Also, for dynamical sys-
tems, zonotopes provide an excellent compromise be-
tween accuracy and efficiency as first [14]. As a direct
consequence, researchers from disparate fields started
to employ them in various applications [15,16]. The
greater part of this application exploits the zonotope
facility in defining robust approximations.

Zonotopes are also used to rigorously estimate the
states of dynamical systems as an alternative to ob-
servers that optimize with respect to the best estimate,
such as Kalman filters. One of the first works that
use zonotopes for state-bounding observers is [17] and
bounded disturbance in [18]. Similarly to reachabil-
ity analysis, this work has been extended to nonlinear
systems in [19,20] and systems with uncertain param-
eters [21].

This paper is organised as follows, a description
of the considered problem is first presented. Then,
the optimal control problem for constrained uncer-
tain systems is formulated. Its resolution procedure
using zonotopic invariant sets with an interpolation
step, is proposed. The efficiency of the used zonotopic
invariant sets is then illustrated by two examples. Fi-
nally, the paper is concluded.

2 Problem description

The considered system is the following linear time-
varying (LTV) system with polytopic uncertainty:

x(k + 1) = A(k)x(k) +Bu(k)
y(k) = Cx(k) (1)

where x(k) is the state of the plant, u(k) is the control
input and y(k) is the plant output. We assume that:

[A(k),B(k)] ∈Ω,
Ω = conv {[A1,B1] , [A2,B2] , ..., [AL,BL]} (2)

where conv is the convex hull and Omega is a poly-
tope, [Aj ,Bj ] are vertices of the polytope such that:

[
Aj ,Bj

]
=

L∑
j=1

λj
[
Aj ,Bj

]
,

L∑
j=1

λj = 1, 0 ≤ λj ≤ 1, (3)

The aim is this research is to find a state-feedback con-
trol law:

u(k + i/k) = Kx(k + i) (4)

that stabilizes (1) with the following performance
cost:

min
u(k+i/k)

max
[A(k+i),B(k+i)]∈Ω,i≥0

J∞(k)

J∞(k) =
∞∑
i=0

[
x(k + i/k)
u(k + i/k)

]T [
Θ 0
0 R

][
x(k + i/k)
u(k + i/k)

]
(5)

subject to :

|uh(k + 1/k)| ≤ uh,max,h = 1,2, ...,nu (6)∣∣∣yr (k + 1/k)
∣∣∣ ≤ yr,max, r = 1,2, ...,ny (7)

where Θ > 0 and R > 0 are symmetric weighting ma-
trices.

In [13] the authors describe the concept of an
asymptotically stable invariant ellipsoid to develop a
robust constrained MPC algorithm. This algorithm
gives a sequence of explicit control laws correspond-
ing to a sequence of asymptotically stable invariant
ellipsoids constructed off-line one within another in
state space. They solved, at each time step, the ro-
bust constrained MPC problem using Linear Matrix
Inequalities (LMI). The obtained result is considered
conservative due to invariant ellipsoids which are an
approximation of the real invariant sets.

In [5] the authors describe polyhedral invariant
sets with an off-line robust algorithm to stabilize un-
certain systems. They are calculated off-line a se-
quence of state feedback control laws corresponding
to a sequence of polyhedral invariant sets. At each
sampling time, the smallest polyhedral invariant set
that the currently measured state can be embedded is
determined. The corresponding state feedback con-
trol law is then implemented to the process.

We intend to use this algorithms with zonotopic
representation of the invariant sets followed by an in-
terpolation step to get less conservative results.

3 Robust MPC Algorithm

In this section, an interpolation-based robust MPC
algorithm for uncertain polytopic discrete-time sys-
tems using zonotopic invariant sets is presented. The
nested zonotopic invariant sets and feedback gains are
pre-computed off-line in first step, in order to reduce
the on-line computational burdens. In second step,
the real-time control law is calculated by linear in-
terpolation between the feedback gains correspond-
ing to the zonotopic invariant sets previously gener-
ated. The optimization problem solved at each time
step is based on optimization of linear performance
index and only a computationally low-demanding op-
timization problem is required to be solved on-line.
Definition 1: (Invariant sets)
An invariant set is a subset of the state space Ω ∈ Rn,
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such that for all x0 ∈ Ω, and all admissible input
function u : R → U , the solution to system (1) with
x(0) = x0 satisfies x(t) ∈Ω for all t ≥ 0.

Intuitively, the system remains trapped in the in-
variant for all future times [22].

One of the advantages of invariant sets, compared
with iterative methods, is that they cover unbounded
time horizon, without any extra cost. A second one
is that they that have in general a compact represen-
tation. For example, an invariant ellipsoid is repre-
sented by a single nn matrix. Whereas, iterative meth-
ods produce a large number of sets, often with grow-
ing complexity. Each of these sets has to be taken into
account in order to enclose all reachable states.

3.1 Off-line Steps

Step 1: Choose a state sequence xi , i ∈ {1,2, ...,N }and
solve the following problem to obtain corresponding
state feedback gains:

Ki = YiQ
−1
i (8)

The states xi must be chosen such that the distance
between xi+1 and the origin is less than the distance
between xi and the origin. Matrices Yi andQ−1

i , for all
i = 1,2, ...,N are solutions of the following problem:

min
γi ,Qi ,Yi

γi (9)

subject to: [
1 xTi
xi Qi

]
≥ 0, (10)


Qi QiA

T
j +Y TBTj QiΘ

1/2 Y Ti R
1/2

AjQi +BjYi Qi 0 0
Θ1/2Qi 0 γiI 0
R1/2Yi 0 0 γiI

 ≥ 0 (11)

∀j = 1,2, . . . ,L[
X Yi
Y Ti Qi

]
≥ 0, Xhh ≤ u2

h,max, h = 1,2, . . . ,nu (12)

[
S C(AjQi +BjYi)
(AjQi +BjYi)TCT Qi

]
≥ 0, Srr ≤ y2

r,max,

r = 1,2, . . . ,ny , ∀j = 1,2, . . . ,L,
(13)

Step 2: Given the state feedback gains:

Ki = YiQ
−1
i , i ∈ {1,2, . . . ,N } (14)

from step 1. For each Ki , the corresponding polyhe-
dral invariant sets defined by:

Si = {xi /Mixi ≤ di} (15)

are constructed by the following :

Step 2.1: Set Mi =
[
CT ,−CT ,KTi ,−K

T
i

]T
,di =[

yTmax, y
T
min,u

T
max,u

T
min

]T
and m = 1.

Step 2.2: Select row m from (Mi , di) and check

whether Mi,m(Aj +BjKi)x ≤ di,m is redundant with re-
spect to the constraints defined by (Mi , di) by solving
the problem:

max
x

Wi,m,j (16)

subject to

Wi,m,j =Mi,m(Aj +BjKi)x − di,m , Mix ≤ di (17)

Step 2.3: Let m = m + 1 and return to Step 2.2. If m
is strictly larger than the number of rows in (Mi , di)
then terminate.

3.2 On-line Step using polyhedral sets

3.2.1 Without interpolation

At each sampling time, determine the smallest poly-
hedral invariant set Si = {xi /Mixi ≤ di} where i =
1,2, ...,N − 1.
containing the measured states and implement the
corresponding state feedback control law u(k/k) =
Kix(k/k) to the process.

3.2.2 With 3-points interpolation

At each sampling time, if the measured state lies be-
tween Si , Si+1 and Si+2, i = 1,2, ...,N −1 implement the
interpolated gain obtained by :

K =α1Ki−2 +α2Ki−1 +α3Ki (18)

where 0 < αi < 1,for all i = 1,2,3 and
3∑
i=1
αi = 1.

3.3 On-line Step using zonotopic sets

Zonotopes are convex polytopes that are centrally
symmetric. Equivalently, a zonotope is a Minkowski
sum of a finite set of line segments. A polytope is
a zonotope if it can also be represented by so-called
generators (G-representation).

Definition 2: (G-representation of a zonotope)
Given a vector c ∈ Rn and a set of vectors of Rn,G =
{g1, ..., gm} ,m ≥ n , a zonotope Z of order m is defined
as following:

Z =

x ∈ Rn,x = c+
p∑
i=1

γi .gi ;−1 ≤ γi ≤ 1

 (19)

The vector c is called the center of the zonotope Z.
The vectors g1, ..., gm are called generators of Z.
The order of zonotope is defined by the number of its
generators (m in this case). In the case of m < n, its
called degenerated zonotope.

This definition is equivalent with the definition of
zonotopes by the Minskowski sum of a finite number
of line segments defined by giB1. Z = (c;g1, g2, ..., gm) =
c⊕ g1B

1⊕ ...⊕ gmB1 Where Bn is a unitary box in Rn, is
a box composed by n unitary intervals. And ⊕ is the
Minkowski sum.
Definition 3: (Minkowski sum)
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The Minkowski sum of two sets X and Y is defined by
X ⊕Y = {x+ y : x ∈ X,y ∈ Y } .
Definition 4: (Unitary interval)
The unitary interval is defined by Bn = [−1,1].
Definition 5: (Box)
A box is an interval vector. An interval hull of a set
Z ⊆ Rn , denoted by �Z is a box that satisfies Z ⊆ �Z
Given a box �Z = ([a1,b1], ..., [an,bn])T . mid(�Z), de-
notes its center and diam(�Z) = (b1 − a1, ...,bn − an)T

Definition 6: (Unitary box)
A unitary box, denoted by Bn is a box compound by n
unitary intervals.
Definition 7: (V-representation of a polytope)
Given r vertices vi ∈ Rn, P = conv {v1, ...,vr } is a convex
polytope, where conv is the convex hull operator.
To obtain zonotopic sets from polyhedral ones, we
have to perform the following three steps:
Step 1: Compute the vertices vi ∈ Rn (V-
representation) of all N polytopes Si , i = 1, ,N .
Step 2: Obtain the minimum and maximum values of
each polytope i:

mmin = min(V 1
i , ...,V

v
i ),

mmax = max(V 1
i , ...,V

v
i ).

(20)

where V ji is the ith component of vj and r is the num-
ber of the vertices of each polytope.
Step 3: Compute a G-representation of the n-
dimensional interval [mmin,mmax] :

[mmin,mmax] =
{
x = c+

∑n

i=1
γi .gi ,−1 ≤ γi ≤ 1

}
,

(21)
where :

c = 0.5(mmin +mmax), (22)

g
(i)
i =

{
0.5(mmax −mmin), if i = j
0, otherwise (23)

3.3.1 Without interpolation

At each sampling time, determine the smallest invari-
ant zonotope

Z =
{
x|x = c+

p∑
i=1
γi .gi ,−1 ≤ γi ≤ 1

}
, i = 1,2, ...,N − 1

containing the measured states and implement the
corresponding state feedback control law u(k/k) =
Kix(k/k) to the process.

3.3.2 With 2-points interpolation

At each sampling time, if the measured state lies be-
tween Zi and Zi−1, implement the interpolated gain
obtained by :

K = αKi + (1−α)Ki+1 (24)

where 0 < αi < 1, for all i = 1,2, and
2∑
i=1
αi = 1.

3.3.3 with 3-points interpolation

At each sampling time, if the measured state lies be-
tween Zi ,Zi−1 and Zi−2, implement the interpolated
gain obtained by:

K = α1Ki−2 +α2Ki−1 +α3Ki (25)

where 0 < αi < 1,for all i = 1,2,3, and
3∑
i=1
αi = 1.

4 Application

In this section, we are going to present two examples
allowing to implement the proposed approach. For
both examples, the software Yalmip toolbox [23] in
the MATLAB environment was used to compute the
solution of the LMI minimization problem.

4.1 Example 1

Lets consider an uncertain non-isothermal CSTR [5]
where the exothermic reaction AB takes place. The
reaction is irreversible and the rate of reaction is first
order with respect to component A. A cooling coil is
used to remove heat that is released in the exothermic
reaction. The uncertain parameters are: the reaction
rate constant k0 and the heat of reaction ∆Hrxn. The
linearized model based on the component balance
and the energy balance is given by the following state
equations: {

x(t + 1) = A(t)x(t) +B(t)u(t)
y(t) = Cx(t) (26)

where x =
[
CA
T

]
is the state vector x(t) and u =[

CA,F
FC

]
is the control input vector u(t). Matrices are

defined by:

A =


− FV − k0e

−E/RTs − E
RT 2

s
k0e
−E/RTsCAs

−∆Hrxnk0e
−E/RTs

ρCp

− FV −
UA
VρCp

−∆Hrxn E
ρCpRT

2
s
k0e
−E/RTsCAs


(27)

B =

 F
V 0
0 − 2.098× 105 Ts−365

V ρCp

 , (28)

C =
[

1 0
0 1

]
(29)

Where CA is the concentration of A in the reac-
tor, C(A,F) is the feed concentration of A, T is the
reactor temperature, and FC is the coolant flow.
The operating parameters are: F = 1m3/min, V =
1m3, k0 = 109 − 1010min−1, E

R = 8330.1K, −∆Hr×n =
107 − 108cal/kmol, ρ = 106g/m3,UA = 5.34 ×
106cal/(kmin) and Cp = 1cal/(gk). Let CA = CA−CA,eq,
T A = T − Teq, CA,F = CA,F −CA,F,eq and FC = FC − FC,eq
where the subscript eq is used to denote the corre-
sponding variable at equilibrium condition. By dis-
cretization, using a sampling time of 0.15 min, the
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discrete-time model with
[
CA(k)
T (k)

]
as a state vector

and
[
CA,F(k)
FC(k)

]
as a control vector, is given as follows:{

x(k + 1) = A(k)x(k) +B(k)u(k)
y(k) = Cx(k) (30)

where:

A =
[

0.85− 0.0986α(k) − 0.0014α(k)
0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)

]
B =

[
0.15 0
0 − 0.912

]
, C =

[
1 0
0 1

]
(31)

where: 1 ≤ α(k) = k0/109 ≤ 10 and 1 ≤ β(k) =
−∆Hrxn/107 ≤ 10.
The two parameters (k) and (k) are independent of
each other. Then, we consider the following polytopic
uncertain model with four vertices:

Ω = Co


[

0.751 − 0.0014
0.986 0.063

]
,

[
0.751 − 0.0014
9.864 0.189

]
,[

0.751 − 0.0014
0.986 0.063

]
,

[
0.751 − 0.0014
9.864 0.189

]
,


(32)

The objective is to regulate the concentration CA and
the reactor temperature T to the origin by manip-
ulating CA,F and FC , respectively. These variables
are constrained by:

∣∣∣CA,F ∣∣∣ ≤ 0.5kmol/m3, and
∣∣∣FC ∣∣∣ ≤

1.5m3/min.
The cost function is given by (5) with Θ = I and
R = 0.1I .
Lets choose a sequence of states:

xi =


(0.0525,0.0525), (0.0475,0.0475),
(0.0425,0.0425), (0.0375,0.0375),
(0.0325,0.0325), (0.0275,0.0275)

 (33)

This sequence is used to calculate six off-line feedback
gains Ki , i = 1,2, ...,6. The regulated output (the con-
centration of A and the reactor temperature), when
α(k) and β(k) are randomly time-varying between
109 ≤ α(k) = 1010 and 107 ≤ β(k) = ∆Hr×n ≤ 108.
The obtained zonotopes are defined by:

ci =
{

2.98,3.17,−1.31,1.31,−3.17,−2.98
}
, (34)

Where ci is the center of the zonotope Zi , i = 1,2, ..,6.
The generators matrices are defined by:

gi =



3.07 0 0 0 0 0
0 3.26 0 0 0 0
0 0 1.29 0 0 0
0 0 0 1.29 0 0
0 0 0 0 3.26 0
0 0 0 0 0 3.07


(35)

for all i = 1,2, ..,6.
The regulated outputs are shown respectively in Fig-
ure 1 and Figure 2. It is seen that the considered zono-
topic sets give less conservative results and better sys-
tem performance as compared to the approach using
polyhedral ones.

Figure 1: The concentration of A in the reactor of the
regulated output

Figure 2: The reactor temperature of the regulated
outputIn Figure 3 and Figure 4 respectively, it is seen
that the considered interpolation using three zono-
topic sets, give less conservative results as compared
to the approach with interpolation of polyhedral sets.

Figure 3: The concentration of A in the reactor of the
regulated output

Figure 4: The reactor temperature of the regulated
output
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4.2 Example 2

We consider the angular positioning system [4]. It
consists of an electric motor driving a rotating an-
tenna so that it always points in the direction of a
moving object. The motion of the antenna can be de-
scribed by the following discrete time-equation:



[
θ(k + 1)
•
θ(k + 1)

]
=

[
1 0.1
0 1− 0.1α(k)

][
θ(k)
•
θ(k)

]
+
[

0
0.0787

]
u(k)

y(k) = [1 0]
[
θ(k)
•
θ(k)

] (36)

where θ(k) is the angular position of the antenna,
•
θ(k)

is the angular velocity and u(k) is the input voltage of
the motor. It is assumed that the uncertain parameter
is arbitrarily time-varying : 0.1α(k)10.

Let θ = θ−θeq,
•
θ =

•
θ−

•
θ
eq

and u = u−ueq where the sub-

script eq denotes the corresponding variable at equi-
librium condition. The obtained system can be writ-
ten as follows:

 θ(k + 1)
•
θ(k + 1)

 =
[

1 0.1
0 1− 0.1α(k)

] θ(k)
•
θ(k)


+
[

0
0.0787

]
u(k)

y(k) = [1 0]

 θ(k)
•
θ(k)


(37)

The system (36) has the following polytopic struc-
ture:

A(k) ∈ conv
{[

1 0.1
0 0.9

]
,

[
1 0.1
0 0

]}
(38)

The input constraint is:

|u(k)| ≤ 2volts (39)

The weighting matrices Θ and R are given by:

Θ =
[

1 0
0 0

]
and R = 0.00002 I (40)

Lets choose the following sequence of seven states:

xi =


(0.35,0.35), (0.3,0.3),
(0.25,0.25), (0.02,0.02),
(0.15,0.15), (0.1,0.1), (0.05,0.05)

 (41)

This sequence is used to calculate seven state feedback
gains Ki corresponding to seven polyhedral invariant
sets. The obtained zonotopes are defined by their cen-
ters:

ci =
{

1.52,−0.08,−0.21,0.21,
0.08,−1.52,0.21

}
i = 1,2, ...,7. (42)

The zonotope generators are given by:

gi =



0.82 0 0 0 0 0 0
0 3.87 0 0 0 0 0
0 0 0.70 0 0 0 0
0 0 0 3.38 0 0 0
0 0 0 0 0.59 0 0
0 0 0 0 0 2.87 0
0 0 0 0 0 0 0.47


(43)

for all i = 1,2, ...,7.
Figure 5 and Figure 6 represent closed-loop responses
of the system when α(k) is randomly time-varying be-
tween 0.1 ≤ α(k) ≤ 10.

Figure 5: The regulated output

Figure 6: The control input

We can observe that by the considered approach
with zonotopic sets using three points interpolation
especially the one with three control gains, we obtain
better control performances as compared to the ap-
proach with interpolation of polyhedral sets.

5 Conclusion

In this paper, we have presented an input feedback
robust model predictive control of polytopic uncer-
tain discrete-time systems. The proposed algorithm
used an off-line optimal control optimization prob-
lems solution to determine a sequence of feedback
gains. A sequence of nested zonotopic invariant sets
associated with pre-computed feedback gains are con-
structed. At each control iteration, the smallest invari-
ant containing the measured states is identified, and
the corresponding feedback gain is implemented. In
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addition, an interpolation step to the obtained control
laws based on polyhedral and zonotopic invariant sets
respectively was employed. The proposed approach
applied on examples showed that the control perfor-
mance using zonotopic invariant sets followed by an
interpolation of the nested zonotopes is better than
the one using polyhedral invariant sets.
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